VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year II-Semester Backlog Examinations, May-2017 Mathematics-II

Time: $\mathbf{3}$ hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (15 Marks)

1. Find the directional derivative of $f(x, y, z)=x y^{2}+4 x y z+z^{2}$ at the point $(1,2,3)$ in the direction $(i-j+2 k)$.
2. What is Integrating factor?
3. Solve the differential equation $y^{\prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=0$.
4. Express $3 x^{2}+5 x-6$ in terms of Legender polynomial.
5. Express $J_{3}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$.
6. Evaluate $\int_{c}\left(x^{2}-y^{2}\right) d s, c$ is the closed curve $x=3 \cos t, y=3 \sin t, 0 \leq t \leq 2 \pi$.
7. Find orthogonal trajectory of $y=x+c e^{-x}$.
8. Write down particular integral of the differential equation $y^{\prime \prime}-2 y^{n}-5 y^{\prime}+6 y=18 e^{x}$.
9. Define ordinary and singular points of an equation.
10. Define Beta and Gamma function.

Part-B $(5 \times 7=35$ Marks $)$

11. a) If $\bar{r}=x i+y j+z k$ and $r=|\bar{r}|$, show that the $\operatorname{div}\left(\frac{\bar{r}}{r^{3}}\right)=\mathbf{0}$
b) Apply Green's theorem to evaluate $\int_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where c is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^{2}+y^{2}=a^{2}$.
12.a) Solve the differential equation $y^{\prime}+4 x y+x y^{3}=0$.
b) Show that the one parameter family of curves $y^{2}=4 c(x+c)$ are self orthogonal.
12. a) Find the general solution of the equation $y^{\prime \prime}+16 y=32 \sec 2 x$, using the method of variation of parameters.
b) Find the solution of the differential equation $x^{2} \cdot y^{\prime \prime}+2 x y^{\prime}-2 y=0$.
13. a) Find the power series solution about $x=2$, of the initial value problem

$$
\begin{equation*}
4 y^{\prime \prime}-4 y^{\prime}+y=0, y(2)=0, y^{\prime}(2)=\frac{1}{e} . \tag{3}
\end{equation*}
$$

b) Prove that ${ }^{(n+1)} \mathrm{P}_{\mathrm{n}+1}(\mathrm{x})=(2 \mathrm{n}+1) \mathrm{x} \mathrm{P}_{\mathrm{n}}(\mathrm{x})-\mathrm{n} \mathrm{P}_{\mathrm{n}-1}(\mathrm{x})$
15. a) Prove that $B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
b) Show that $J_{\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x x}}\left[\frac{1}{x^{2}}\left(3-x^{2}\right) \sin x-\frac{3}{x} \cos x\right]$
16. a) Evaluate the line integral of $\mathbf{v}=x^{2} \mathbf{i}-2 \mathbf{y j}+z^{2} \mathbf{k}$ over the straight line path from $(-1,2,3)$ to $(2,3,5)$
b) Obtain the general solution and the singular solution of the non-linear equation $y=x y^{\prime}+\left(y^{\prime}\right)^{2}$
17. Answer any two of the following:
a) Find the general solution of the differential equation $x^{3} y^{\prime \prime}+2 x^{2} y^{\prime \prime}=0$
b) Using Rodrigue's formula, show that $\int_{-1}^{1} x^{m} P_{n}(x) d x=0, m<n$.
c) Show that $J_{\frac{1}{2}}^{2}(x)+J_{\frac{-1}{2}}^{2}(x)=\frac{2}{\pi x}$

